

# **Resistor Color-Coding**



Copyright © 2014 Thomas and Mathieu DUBAËLE

# **Table of Contents**

| INTRODUCTION        | 3 |
|---------------------|---|
| METHOD TO READ      | 3 |
| 1. 4-BAND RESISTORS | 3 |
| 2. 5-BAND RESISTORS | 4 |
| 3. 6-BAND RESISTORS |   |
| SUMMARY TABLE       | 5 |
| TEST YOUR SKILLS    | 6 |
| TIPS                | 6 |

#### Introduction

This lesson explains how to read the color code painted on the bands of the resistors. This information is deliberately brief - but sufficient - because of the many electronic lessons that can be found on the Internet.

In most cases, the resistor is presented with **colored rings** (bands) around it. Each color corresponds to a digit.

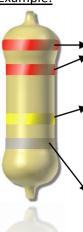
The correspondence between the digits and the colors of the bands is named "the **resistor color code**": this code is used to determine the value of a resistor or indicate its values by using a color code. It is defined by the international standard "IEC 60062" entitled "Marking codes for resistors and capacitors".

#### Example of a resistor:



Source: Wikipedia.org.

#### Method to read


You must first turn the resistor the <u>right way up</u>. Usually, the resistor has a **gold** or **silver** band that must be placed on the **right**. In other cases, it is the **largest** band that must be placed on the **right** or the band placed **closest the extremity** you must put on the **left**.

There are **three types of resistors** depending on the number of bands: 4-band, 5-band and 6-band resistors. Each resistor type is described in the following paragraphs.

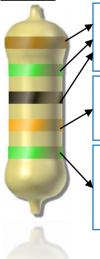
#### 1. 4-band resistors

- The first two bands provide **significant figures**: the first gives the ten and the second the unit.
- The third gives the **multiplier**, in other words the power of 10 to be multiplied to significant digits (the number of zeros to add to the significant figures).
- The fourth determines the **tolerance** of the resistor that indicates the incertitude on the effective value of the resistor given by the manufacturer. The selling price of the resistor is inversely proportional to its precision.

#### Example:



**Significant figures.** The red color corresponds to the digit **2** (see the correspondence between color and digit in the summary table). The significant digits are **22**.


**Multiplier**. The yellow color corresponds to the digit **4**. The significant digits have to be multiplied by  $10^4$  (ie. add **4 zeros** after the 2 significant figures). The value of the resistor is **220** 000  $\Omega$  or **220** k $\Omega$ .

**Tolerance**. The silver color corresponds to the tolerance  $\pm 10$  %. It means that given the incertitude provided by the manufacturer, the effective value of the resistor varies from  $\pm 198$  k $\Omega$  (220 k $\Omega$  - 220 k $\Omega$  x 10/100) and  $\pm 242$  k $\Omega$  (220 k $\Omega$  + 220 k $\Omega$  x 10/100).

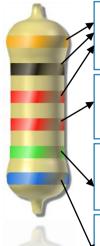
#### 2. 5-band resistors

- The first three bands provide the **significant figures**: the first gives the hundred, the second the ten and the third the unit. The third band is only used when the tolerance of the resistor is less than 2%.
- The fourth gives the **multiplier**, in other words the power of 10 to be multiplied to significant digits (the number of zeros to add to the significant digits).
- The fifth is the **tolerance** of the resistor that indicates the incertitude on the effective value of the resistor given by the manufacturer. The selling price of the resistor is inversely proportional to its precision.

#### Example:



**Significant figures**. The brown color corresponds to the digit **1** (see the correspondence between color and digit in the summary table), the green color to **5** and the black color to **0**. The significant digits are **150**.


**Multiplier**. The orange color corresponds to the digit 3. The significant digits have to be multiplied by  $10^3$  (ie. add 3 zeros after the 3 significant figures). The value of the resistor is  $150\ 000\ \Omega$  or  $150\ k\Omega$ .

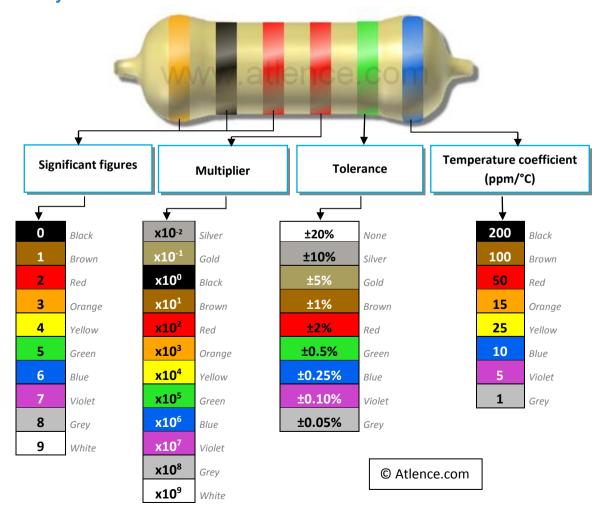
**Tolerance**. The green color corresponds to the tolerance  $\pm 0.5\%$ . It means that given the incertitude provided by the manufacturer, the effective value of the resistor varies from  $\pm 149.25 \text{ k}\Omega$  (150 k $\Omega$  - 150 k $\Omega$  x 0.5/100) and  $\pm 150.75 \text{ k}\Omega$  (150 k $\Omega$  + 150 k $\Omega$  x 0.5/100).

#### 3. 6-band resistors

- The first five bands have the same meaning as the 5-band resistors (see above).
- The sixth band is a **temperature coefficient** that indicates the change in electrical conductivity with temperature.

## Example:




**Significant figures**. The orange color corresponds to the digit **3** (see the correspondence between color and digit in the summary table), the black color to **0** and the red one to **2**. The significant figures are **302**.

**Multiplier**. The red color corresponds to the digit 2: the significant digits have to be multiplied by  $10^2$  (ie. add 2 zeros after the 3 significant figures). The value of the resistor is  $30\ 200\ \Omega$  or  $30.2\ k\Omega$ .

**Tolerance**. The green color corresponds to the tolerance  $\pm 0.5\%$ . It means that given the incertitude provided by the manufacturer, the effective value of the resistor varies from  $30.049 \text{ k}\Omega$  (30.2 k $\Omega$  - 30.2 k $\Omega$  x 0.5/100) and  $30.351 \text{ k}\Omega$  (30.2 k $\Omega$  + 30.2 k $\Omega$  x 0.5/100).

**Temperature coefficient.** The blue color corresponds to a temperature coefficient equal to 10 ppm/°C.

# **Summary table**



**Note**: The 3<sup>rd</sup> band (3<sup>rd</sup> significant digit) is only used when the tolerance of the resistor is **less than** 2%

# **Test your skills**

To practice and test your knowledge on the resistor color code, visit the Website <a href="http://www.atlence.com">http://www.atlence.com</a> and download the software *Atlence Resistor Viewer*. It includes a **quiz on the resistor color code**.

## **Tips**

A mnemonic to keep in mind the resistor color code is to remember one of the following two sentences:

<u>Bad Beer Rots Our Young Guts But Vodka Goes Well</u>

or

<u>Black Bears Rarely Outrun Young Grizzlys But Victimize Gray Wolves</u>

By taking the first letter of each word, you get the color:

| 1 <sup>st</sup> letter | Color  | Position |
|------------------------|--------|----------|
| В                      | Black  | 0        |
| В                      | Brown  | 1        |
| R                      | Red    | 2        |
| 0                      | Orange | 3        |
| Υ                      | Yellow | 4        |
| G                      | Green  | 5        |
| В                      | Blue   | 6        |
| V                      | Violet | 7        |
| G                      | Grey   | 8        |
| W                      | White  | 9        |

The **position of the words** in the sentence (<u>by starting the numbering at 0</u>) indicates the digit that corresponds to the **color of the band.** 

